
Image compression

Rahul Patel (121040)
rahul.patel@iet.ahduni.edu.in

Shashwat Sanghavi (121049)
shashwat.sanghavi@iet.ahduni.edu.in

Institute of Engineering & Technology, Ahmedabad University

October 20, 2015

1 Introduction [1, 2, 3]

Internet is one of the most important medium for data transfer in present age. Utility

of the Internet has evolved since it’s perception. In it’s infancy it was used by applica-

tions which consumed minimal data as they were text based. As a matter of contrast,

it wouldn’t be a hyperbole to state that in major present day applications usage of mul-

timedia data is significantly higher than text. This fact is bolstered by the fact that 90

percentage of world’s data is generated in the past two years. Hence to utilize the medium

efficiently it is of utmost importance that the data transferred is as small as possible. To

achieve this goal various compression model have been devised. A compression model

takes the raw input data and represents it in such a form that the space required to

store the modified data is less than the original data. Which implies better utilization of

resources like storage space and bandwidth while transferring this data. Apart from the

Internet there are many applications where data usage is extremely crucial. Hence, it has

been researchers focus point since years to develop better compression models.

For an example, let us consider an RGB image of size 1980 ∗ 1080 pixels. The size

occupied by this image will be 1980 ∗ 1080 ∗ 8(bits for each pixel) ∗3(RGB layers) = 6.11

1

MBs. For storing multiple images over a small storage device or to transfer this image

over Internet, it is extremely important compress the image to minimize the size with

minimum loss of data.

Taking into consideration the above mentioned points one cannot deny the significance

of such models in better utilization of resources. Hence, as a part of this project we tried

to study JPEG compression model which is considered to be a milestone in image com-

pression. We also simulated the model, results of which are discussed below.

2 Compression model

Compression model can be classified as lossy compression and lossless compression based

on their ability to obtain the original data from the modified data.

1. Lossy compression

In lossy compression the original data cannot be reconstructed completely from the

modified data. There is an information loss in the reconstructed data as compared

to the original data. This kind of compression is generally used by applications in

which data loss does not alter the perceived information content by human beings.

Generally, lossy compression gives higher compression ratio as compared to lossless

compression. Lossy compression is most commonly used to compress multimedia

data like audio, video, and images, especially in applications such as streaming

media and internet telephony.

2. Lossless compression

In lossless compression the original data can be reconstructed completely from the

modified data. This kind of compression is used for highly information sensitive

data. Typical application of lossless compression is text compression, as one would

2

like to reconstruct the original message without altering any letter or word.

This report presents a detailed study and simulated results of JPEG compression

model which is a form of lossy image compression. Image compression is mostly lossy as

small amount of data loss does not alter the perceived information content of the image.

JPEG compression is one of the widely used compression model to as a good amount of

compression is obtained without much perceived data loss.

3 JPEG model [4, 5, 6]

Below is the diagram showing overview of the steps followed in JPEG compression. The

output of RLE is also subjected to Huffman coding to further reduce the size. Huffman

coding is not implemented in this project as it will be beyond the scope of this project.

Figure 1: (a) Block diagram of techniques implemented during JPEG compression (b)
Block diagram of techniques implemented during JPEG decompression to reconstruct
image

3.1 Compression

1. Convert input image to YCbCr: First of all the color space of the input image

Iin is converted from RGB to YCbCr Iycc. The major reason for converting the image

to YCbCr is the ease of operation on the chrominance and luminance component of

the image. It exploits the fact that human eye is more sensitive to intensity changes
3

rather than color changes. Thus, the chrominance components are down sampled

to half of its size as changes in the chrominance are not identified easily.

2. Divide image into small blocks: Each of the three channel in Iycc is converted in

to 8x8 sub images Iblock. Here 8x8 size is obtained empirically. As Figure 2 shows,

increasing the size of block also improves image quality. But as the size of block is

increased the DCT calculation becomes computationally expensive. As observed in

the image 2, image quality for 8x8 block is sufficiently similar to original image.

Figure 2: Applying DCT over left most image and reconstructing image with 25% of the
coefficients.(a)original image (b) 2x2 block size (c) 4x4 block size (d) 8x8 block size

3. Apply DCT JPEG compression typically uses type-II discrete cosine transform

(DCT-II). The major reason for using DCT-II is it’s strong energy compaction

property. Hence we apply DCT to Iblock which gives us Idct. DCT transforms the

image from spatial domain to frequency domain. In frequency domain it represents

an image in terms of 64(8*8) fundamental frequency components. DCT for any

matrix can be calculated by equation 1. Inverse of this transform can be calculated

by equation 2 which is known as inverse DCT(IDCT). IDCT is used to convert

frequency domain data to spacial domain.

T (u, v) =
n−1∑
x=0

n−1∑
y=0

f(x, y)r(x, y, u, v) (1)

4

f(x, y) =
n−1∑
u=0

n−1∑
v=0

T (u, v)s(x, y, u, v) (2)

Here,

r(x, y, u, v) = s(x, y, u, v) = α(u)α(v)cos[(2x+ 1)
uπ

2n
]cos[(2y + 1)

vπ

2n
] (3)

Figure 3 shows the 2-Dimensional fundamental frequencies from JPEG DCT. Any

image can be represented as linear combination of below shown blocks. In the image,

going from left to right shows the increase in horizontal frequency where as going

down from the top shows increase in vertical frequency. Thus the top left corner

corresponds to the DC component(summation of all intensity levels) of the image

while the bottom right corner corresponds to the highest frequency component of

the image.

Figure 3: 2-Dimensional frequencies from JPEG DCT

4. Quantization Quantization is performed on Idct to get Iquant. The quantization

matrices are based on the quality factor which lies between 1 to 100. The quality of

the image improves with the increase in quality factor. The matrix obtained after

quantization is sparsified because of the frequency components having less weight

are discarded. These frequency components majorly correspond to higher frequency.
5

As mentioned above, human eye is more sensitive to luminance rather than chromi-

nance, removal of high frequency data will affect the perceived information of the

image.

5. Zigzag traversal

Figure 4: Zigzag traversal

The quantized data Iquant which is in the form of 8x8 matrix is subjected to zigzag

traversal to give Izz. It converts the 8x8 matrix block to a 1x64 vector. Figure 4

shows the zigzag traversal on an 8x8 block. It can be inferred from the Figure 4

that most of the zeros will be at the end of the vector as it corresponds to high

frequency components.

6. Run length encoding

Figure 5: Performing RLE on an input vector of dimension 1x10

The output after zigzag traversal Izz is subjected to run length encoding(RLE) to

give Irle. This output is written to a file which is used during the decompression to
6

reconstruct the image. As shown in Figure 5 the output of RLE is smaller in length

as compared to the input. The output of RLE is in the form of (value, repetition).

For eg. 14 is the value and 1 is times 14 is repeated.

3.2 Decompression

For decompression the steps followed in compression are reversed to reconstruct the image.

4 Results

In JPEG compression, the amount of compression one can achieve depends on tpan he

Q-factor. Results shown in Table 1 and 2 highlight this fact. It showcases a set of images

with different Q-factor. For the given input image we can see that for Q-factor equal to 45

and above, the reconstructed image looks almost similar. Also, the size of these images is

significantly smaller than the size of input image. Variation in size of compressed image

and the compression ratio w.r.t to the Q-factor is shown in Figure 7 and 8. A compression

ratio of 10:1 (input image size: output image size) is obtained for Q-factor equal to 5. A

compression ratio of 5:1 is obtained for Q-factor equal to 45.

7

Image Q-factor Size

Input Im-
age

511 KB

5 51.3 KB

10 63.3 KB

15 71.5 KB

20 78.7 KB

Table 1: Result of compressed images with different Q-factors.

8

Image Q-factor Size

25 85.2 KB

35 98.8 KB

45 109 KB

55 118 KB

95 269 KB

Table 2: Result of compressed images with different Q-factors.

9

We also calculated the RMSE using equation 4. Figure 6 shows how RMSE varies

w.r.t Q-factor. As expected the RMSE(root mean square error) decreases as the Q-factor

increases.

RMSE =

√√√√1

p

p∑
i=0

(Inputi −Reconstructedi)2 (4)

P = Total number of pixels in the image i.e. Summation of pixels in three channels.

Figure 6: Graph showing change in the RMS error for different Q-factor. With increase
in Q-factor RMS error decreases

Figure 7: Q-factor Vs. output file size
Figure 8: Q-factor Vs. compression ratio

10

5 Conclusion & future work

Compression techniques have become a necessity in today’s world to optimally utilize the

resources like bandwidth, storage space, etc. This project presented simulation of one

such technique called JPEG compression and decompression. It exploits the fact that

human eye is less sensitive to high intensity variation and color variation in an image.

Hence, we obtain a compressed image by removing such information. The compressed

image will contain the same perceived information as the input image. The technique is

well explained and implemented in the above sections. Results shown in Table 1 and 2 and

Figure 6 helps to conclude that the given technique can be useful in image compression

without losing the perceived information content of the image.

To obtain better compression results one can apply Huffman coding to the output

generated after RLE.

6 Matlab Code

6.1 Codebase

Table 3 contains the list of files along with its functionality, developed for the simulation

of JPEG compression and decompression. These functionality can be easily mapped to

the techniques shown in Figure 1.

11

Filename Usage

writeImage.m Reads the input image and writes the data of
the R, G and B channels separately in binary
form

readImage.m Read the R, G and B channels of image writ-
ten in binary by writeImage.m

main.m Initialize the quality factor and quantization
matrices for chrominance and luminance.
Also works as handle to call the compress.m
and decompress.m.

compress.m It simulates JPEG compression. It performs
various operation like DCT transform, quan-
tization, zigzag traversal and RLE on 8x8
block.

decompress.m It simulates JPEG decompression. It per-
forms steps performed by compress.m in re-
verse order.

zigzag 1.m It does zigzag encoding and decoding during
compress and decompress

rle.m It is used for run length encoding on the out-
put of the zigzag.m

unrle.m It is used for run length decoding on the out-
put of rle.m

Table 3: Table containing names of files and their usage in the JPEG compression and
decompression

6.2 writeImage.m

1 % This f u n c t i o n s takes an RGB image matrix as a input and s t o r e s
that matr ixs i n to three binary f i l e s

2

3 f unc t i on []= writeImage (imMat)
4 % Open three binary f i l e s to wr i t e matr i ce s o f Red Green and

Blue channel
5 f r e d=fopen (’ iR . bin ’ , ’w ’) ;
6 f g r e en=fopen (’ iG . bin ’ , ’w ’) ;
7 f b l u e=fopen (’ iB . bin ’ , ’w ’) ;
8

9 % Seperate three channe l s o f an image
10 iR=imMat (: , : , 1) ;
11 iG=imMat (: , : , 2) ;
12 iB=imMat (: , : , 3) ;

12

13

14 % Write matr i ce s in the binary f i l e
15 f w r i t e (f red , iR) ;
16 f w r i t e (fgreen , iG) ;
17 f w r i t e (fb lue , iB) ;
18 f c l o s e (f r e d) ;
19 f c l o s e (f g r e en) ;
20 f c l o s e (f b l u e) ;
21 end

6.3 readImage.m

1 % This func t i on takes binary f i l e s as a input and reads
m a t r i c i e s conta ined by those f i l e . These matr i ce s would be
converted in to image matrix .

2 f unc t i on [i]=readImage (iR , iG , iB)
3

4 % Open binary f i l e s which conta in s R,G and B matr i ce s o f an
image

5 f r e d=fopen (iR) ;
6 f g r e en=fopen (iG) ;
7 f b l u e=fopen (iB) ;
8

9 % Read matr i ce s from the f i l e and reshape the matrix with
dimension 250∗698

10 iR1=f r ead (f red , [2 5 0 698]) ;
11 iG1=f r ead (fgreen , [2 5 0 698]) ;
12 iB1=f r ead (fb lue , [2 5 0 698]) ;
13

14 % combine matr i ce s to obta in an image
15 i (: , : , 1)=iR1 ;
16 i (: , : , 2)=iG1 ;
17 i (: , : , 3)=iB1 ;
18 i=uint8 (i) ;
19 end

6.4 main.m

1 c l e a r a l l ;
2 q f a c t o r =100;
3 he ight =698;
4 width =250;
5

13

6 %%%%%%%%%%%%%%%%%%%%%%%%%%% PRE−PROCESSING
%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 i f q f a c t o r < 50
8 q s c a l e = f l o o r (5000 / q f a c t o r) ;
9 e l s e

10 q s c a l e = 200 − 2 ∗ q f a c t o r ;
11 end
12 % I n i t i a l i z a t i o n o f quant i za t i on matr i ce s f o r chrominance and

luminance
13 % Quant luminance
14 Q y = [16 11 10 16 24 40 51 61 ; 12 12 14 19 26 58 60 55 ;
15 14 13 16 24 40 57 69 56 ; 14 17 22 29 51 87 80 62 ;
16 18 22 37 56 68 109 103 77 ; 24 35 55 64 81 104 113 92 ;
17 49 64 78 87 103 121 120 101 ; 72 92 95 98 112 100 103 9 9] ;
18 % Quant chrominance
19 Q c = [17 18 24 47 99 99 99 99 ;18 21 26 66 99 99 99 99 ;
20 24 26 56 99 99 99 99 99 ; 47 66 99 99 99 99 99 99 ;
21 99 99 99 99 99 99 99 99 ; 99 99 99 99 99 99 99 99 ;
22 99 99 99 99 99 99 99 99 ; 99 99 99 99 99 99 99 99] ;
23

24 % Sca l e Quant luminance and chrominance
25 Q y = round (Q y .∗ (q s c a l e / 100)) ;
26 Q c = round (Q c .∗ (q s c a l e / 100)) ;
27

28

29 % c a l l matlab code f o r compress ion
30 compress
31 f i g u r e ;
32

33 % c a l l matlab code f o r decompress ion
34 decompress

6.5 compress.m

1 c l o s e a l l ;
2 %Read Image
3 RGB = readImage (’ iR . bin ’ , ’ iG . bin ’ , ’ iB . bin ’) ;
4 imshow (RGB) ;
5 % Convert to YCbCr
6 ycc = rgb2ycbcr (RGB) ;
7 % Downsampling us ing b i l i n e a r t rans fo rmat ion
8 y = ycc (: , : , 1) ;
9 Cb = ycc (: , : , 2) ;

10 Cr = ycc (: , : , 3) ;
14

11 Cb down = i m r e s i z e (Cb, 0 . 5 , ’ b i l i n e a r ’) ;
12 Cr down = i m r e s i z e (Cr , 0 . 5 , ’ b i l i n e a r ’) ;
13

14 % Convert the luminance he ight and width to mul t ip l e o f 8
15 i f rem(s i z e (y , 1) ,8) ˜= 0
16 y = [y ; z e r o s (8−rem(s i z e (y , 1) ,8) , s i z e (y , 2))] ;
17 end
18 i f rem(s i z e (y , 2) ,8) ˜= 0
19 y = [y z e ro s (s i z e (y , 1) , 8−rem(s i z e (y , 2) ,8))] ;
20 end
21

22 % Convert the chrominance he ight and width to mul t ip l e o f 8
23 i f rem(s i z e (Cb down , 1) ,8) ˜= 0
24 Cb down = [Cb down ; z e r o s (8−rem(s i z e (Cb down , 1) ,8) , s i z e (

Cb down , 2))] ;
25 Cr down = [Cr down ; z e r o s (8−rem(s i z e (Cr down , 1) ,8) , s i z e (

Cr down , 2))] ;
26 end
27 i f rem(s i z e (Cb down , 2) ,8) ˜= 0
28 Cb down = [Cb down ze ro s (s i z e (Cb down , 1) , 8−rem(s i z e (Cb down

, 2) ,8))] ;
29 Cr down = [Cr down ze ro s (s i z e (Cr down , 1) , 8−rem(s i z e (Cr down

, 2) ,8))] ;
30 end
31

32 %%%%%%%%%%%%%%%%%%%%%%%% COMPRESSION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33

34 % Block wise (8 x8) DCT of chrominance and luminance
35 dct = @(b l o c k s t r u c t) dct2 (b l o c k s t r u c t . data) ;
36 y dct = blockproc (y , [8 8] , dct) ;
37 Cb down dct = blockproc (Cb down , [8 8] , dct) ;
38 Cr down dct = blockproc (Cr down , [8 8] , dct) ;
39

40 % Quantizat ion o f chrominance and luminance
41 quant y = @(b l o c k s t r u c t) round (b l o c k s t r u c t . data . / Q y) ;
42 quant c = @(b l o c k s t r u c t) round (b l o c k s t r u c t . data . / Q c) ;
43 y dct quant = blockproc (y dct , [8 8] , quant y) ;
44 Cb down dct quant = blockproc (Cb down dct , [8 8] , quant c) ;
45 Cr down dct quant = blockproc (Cr down dct , [8 8] , quant c) ;
46 xyz=1;
47 %Zigzag encoding
48 fh = fopen (’ y . txt ’ , ’w ’) ;

15

49 f o r i = 1 : 8 : s i z e (y dct quant , 1)
50 f o r j = 1 : 8 : s i z e (y dct quant , 2)
51 block = y dct quant (i : i +7, j : j +7) ;
52 s t r a i g h t = z i g z a g 1 (block) ;
53 %Apply RLE on the vec to r
54 %i n t 2 s t r (u int8 (s t r a i g h t))
55 r l e (s t r a i g h t , fh) ;
56 xyz=xyz+1;
57 end
58 end
59 f p r i n t f (fh , ’%c ’ , ’ . ’) ;
60 f c l o s e (fh) ;
61

62 %Zigzag encoding f o r chrominance
63 f cb = fopen (’ cb . txt ’ , ’w ’) ;
64 f c r = fopen (’ c r . txt ’ , ’w ’) ;
65 f o r i = 1 : 8 : s i z e (Cr down dct quant , 1)
66 f o r j = 1 : 8 : s i z e (Cr down dct quant , 2)
67 %f o r Cr
68 block = Cr down dct quant (i : i +7, j : j +7) ;
69 s t r a i g h t = z i g z a g 1 (block) ;
70 %Apply RLE on the vec to r
71 r l e (s t r a i g h t , f c r) ;
72 %f o r Cb
73 block = Cb down dct quant (i : i +7, j : j +7) ;
74 s t r a i g h t = z i g z a g 1 (block) ;
75 %Apply RLE on the vec to r
76 r l e (s t r a i g h t , f cb) ;
77 end
78 end
79 f p r i n t f (fcb , ’%c ’ , ’ . ’) ;
80 f c l o s e (f cb) ;
81 f p r i n t f (f c r , ’%c ’ , ’ . ’) ;
82 f c l o s e (f c r) ;

6.6 decompress.m

1 yName=’ y . txt ’ ;
2 cbName=’ cb . txt ’ ;
3 crName=’ cr . txt ’ ;
4

5

6 s t r a i g h t y=unr l e (yName) ;
7 y dct quant =0;

16

8 i =1;
9 j=i ;

10 k=1;
11 whi le (i<width)
12 whi le (j<he ight)
13 block=z i g z a g 1 (s t r a i g h t y (k , :)) ;
14 y dct quant (i : i +7, j : j +7)=block ;
15 j=j +8;
16 k=k+1;
17 end
18 j =1;
19 i=i +8;
20 end
21

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%get Cb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23 s t r a i g h t c b=unr l e (cbName) ;
24 Cb down dct quant =0;
25 i =1;
26 j=i ;
27 k=1;
28 whi le (i<=width /2)
29 whi le (j<=he ight /2)
30 block=z i g z a g 1 (s t r a i g h t c b (k , :)) ;
31 Cb down dct quant (i : i +7, j : j +7)=block ;
32 j=j +8;
33 k=k+1;
34 end
35 j =1;
36 i=i +8;
37 end
38

39 %%%%%%%%%%%%%%%%%%%%%%get Cr%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 s t r a i g h t c r=unr l e (crName) ;
41 Cr down dct quant =0;
42 i =1;
43 j=i ;
44 k=1;
45 whi le (i<=width /2)
46 whi le (j<=he ight /2)
47 block=z i g z a g 1 (s t r a i g h t c r (k , :)) ;
48 Cr down dct quant (i : i +7, j : j +7)=block ;
49 j=j +8;

17

50 k=k+1;
51 end
52 j =1;
53 i=i +8;
54 end
55

56

57 %%%%%%%%%%%%%%%%%%%%%%%% DECOMPRESSION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

58 % De−quant i za t i on
59 de quant y = @(b l o c k s t r u c t) b l o c k s t r u c t . data .∗ Q y ;
60 de quant c = @(b l o c k s t r u c t) b l o c k s t r u c t . data .∗ Q c ;
61 y dct = blockproc (y dct quant , [8 8] , de quant y) ;
62 Cb down dct = blockproc (Cb down dct quant , [8 8] , de quant c

) ;
63 Cr down dct = blockproc (Cr down dct quant , [8 8] , de quant c

) ;
64

65 % Block wise (8 x8) iDCT of chrominance and luminance
66 i d c t = @(b l o c k s t r u c t) i d c t 2 (b l o c k s t r u c t . data) ;
67 y i d c t = blockproc (y dct , [8 8] , i d c t) ;
68 Cb down idct = blockproc (Cb down dct , [8 8] , i d c t) ;
69 Cr down idct = blockproc (Cr down dct , [8 8] , i d c t) ;
70

71 % Upsampling Chrominance us ing b i l i n e a r trans form
72 Cb up = i m r e s i z e (Cb down idct , 2 , ’ b i l i n e a r ’) ;
73 Cr up = i m r e s i z e (Cr down idct , 2 , ’ b i l i n e a r ’) ;
74

75 %Reconstruct ing the chrominance and luminance o f the same
s i z e

76 y r e c o n s t r u c t = y i d c t (1 : width , 1 : he ight) ;
77 Cb up reconstruct = Cb up (1 : width , 1 : he ight) ;
78 Cr up recons t ruc t = Cr up (1 : width , 1 : he ight) ;
79

80 % Reconstruct image s i m i l a r to o r i g i n a l ycc image
81 y c c r e c o n s t r u c t = ze ro s ([width , height , 3]) ;
82 y c c r e c o n s t r u c t (: , : , 1) = y r e c o n s t r u c t ;
83 y c c r e c o n s t r u c t (: , : , 2) = Cb up reconstruct ;
84 y c c r e c o n s t r u c t (: , : , 3) = Cr up recons t ruc t ;
85 y c c r e c o n s t r u c t = uint8 (y c c r e c o n s t r u c t) ;
86

87 % Reconstruct image s i m i l a r to o r i g i n a l RGB image
88 RGB reconstruct = uint8 (ycbcr2rgb (y c c r e c o n s t r u c t)) ;

18

89

90 imshow (RGB reconstruct) ;

6.7 rle.m

1 % Function f o r doing RLE.
2 % Input : Vector
3 % Output : Char1 f r eq1 char2 f r eq2 . . . ,
4 % Sample
5 % Input : [1 1 1 0 0 1 0 1]
6 % Output : 1 3 0 2 1 1 0 1 1 1 , (in a f i l e named data . txt)
7

8 f unc t i on [] = r l e (s t r a i g h t , fh)
9 % count the f requency o f each cha rac t e r

10 i =1;
11 whi le (i <= s i z e (s t r a i g h t , 2))
12 curr = s t r a i g h t (i) ;
13 f p r i n t f (fh , ’%s ’ , i n t 2 s t r (curr)) ;
14 j=i +1;
15 whi le (j <= s i z e (s t r a i g h t , 2))
16 i f cur r == s t r a i g h t (j)
17 j = j + 1 ;
18 e l s e
19 count = j − i ;
20 i = j ;
21 break ;
22 end
23 end
24 i f j>s i z e (s t r a i g h t , 2)
25 count = j−i ;
26 i = j ;
27 end
28 f p r i n t f (fh , ’%s ’ , i n t 2 s t r (count)) ;
29 end
30 f p r i n t f (fh , ’%c ’ , ’ , ’) ;
31 end

6.8 unrle.m

1 f unc t i on s t r a i g h t=unr l e (f i l ename)
2 f=fopen (f i l ename , ’ r ’) ;
3 row=0;
4 whi le (1)
5 x=f s c a n f (f , ’%d ’) ;

19

6 i f l ength (x)>=1
7 va lues =0;
8 f r e q =0;
9 row=row+1;

10 temp=x ;
11 i =1;
12 j =1;
13 k=1;
14 whi le (i<=length (x))
15 i f (mod(i , 2) == 1)
16 va lues (j)= x (i) ;
17 j=j +1;
18 e l s e
19 f r e q (k)=x (i) ;
20 k=k+1;
21 end
22 i=i +1;
23 end
24 i =1;
25 j =1;
26 whi le (i <= length (f r e q))
27 s t r a i g h t (row , j : j+f r e q (i)−1)=va lue s (i) ;
28 j=j+f r e q (i) ;
29 i=i +1;
30 end
31 e l s e
32 x=f s c a n f (f , ’%c ’ , 1) ;
33 i f x==’ , ’
34 % cont inue ;
35 e l s e i f x==’ . ’
36 break ;
37 end
38 end
39 end
40 f c l o s e (f) ;
41 end

6.9 zigzag.m

1 % func t i on output = z igzag (input)
2 % The func t i on z i g zag takes a matrix (8 x8) or a vec to r as an

input
3 % argument .
4 % Based on the input i f per forms z i g zag encoding or decoding

20

5

6 f unc t i on output = z i g z a g 1 (input)
7 % I n i t i n d i c e s
8 s t r a i g h t i n d e x = 2 ;
9 x index = 1 ;

10 y index = 2 ;
11 f l a g = 1 ;
12 % Matrix to vec to r (Encoding)
13 i f s i z e (input , 1) == 8 && s i z e (input , 2) == 8
14 output = ze ro s (1 , 64) ;
15 output (1) = input (1 , 1) ;
16 i n p u t f l a g = 1 ;
17 % Vector to matrix (Decoding)
18 e l s e i f s i z e (input , 1) == 1 && s i z e (input , 2) == 64
19 output = ze ro s (8 , 8) ;
20 output (1 , 1) = input (1) ;
21 i n p u t f l a g = 2 ;
22 end
23 whi le s t r a i g h t i n d e x < 65
24 % Check matrix to vec to r or v i c e ver sa
25 i f i n p u t f l a g == 1
26 output (s t r a i g h t i n d e x) = input (x index , y index) ;
27 e l s e i f i n p u t f l a g == 2
28 output (x index , y index) = input (s t r a i g h t i n d e x) ;
29 end
30 % Cross Traverse down
31 i f f l a g == 1
32 x index = x index + 1 ;
33 y index = y index − 1 ;
34 % Cross Traverse up
35 e l s e i f f l a g == 2
36 x index = x index − 1 ;
37 y index = y index + 1 ;
38 end
39 s t r a i g h t i n d e x = s t r a i g h t i n d e x + 1 ;
40 % Boundary c o n d i t i o n s f o r z ig−zag encoding on 8x8 block
41 % Current p o s i t i o n i s in the bottom r i g h t corner o f cube
42 i f (x index > 8 && y index < 1)
43 x index = 8 ;
44 y index = 2 ;
45 f l a g = 2 ;
46 % Current p o s i t i o n i s in the bottom of cube
47 e l s e i f (y index < 1)

21

48 y index = y index + 1 ;
49 f l a g = 2 ;
50 % Current p o s i t i o n i s in the l e f t s i d e o f cube
51 e l s e i f (x index < 1)
52 x index = x index + 1 ;
53 f l a g = 1 ;
54 % Current p o s i t i o n i s in the top o f cube
55 e l s e i f (y index > 8)
56 y index = y index − 1 ;
57 x index = x index + 2 ;
58 f l a g = 1 ;
59 % Current p o s i t i o n i s in the r i g h t s i d e o f cube
60 e l s e i f (x index > 8)
61 x index = x index − 1 ;
62 y index = y index + 2 ;
63 f l a g = 2 ;
64 end
65 end
66 end

References

[1] Big Data, for better or worse: 90% of world’s data generated over last two years,

SINTEF. May 22, 2013.

http://www.sciencedaily.com/releases/2013/05/130522085217.htm

[2] Human eye sensitivity and photometric quantities,

http://www.ecse.rpi.edu/∼ schubert/Light-Emitting-Diodes-dot-org/Sample-Chapter.pdf

[3] EYE INTENSITY RESPONSE, CONTRAST SENSITIVITY,

http://www.telescope-optics.net/eye intensity response.htm

[4] Dwivedi, Harsh Vardhan. Design of JPEG Compressor. Diss. National Institute of

Technology Rourkela, 2009.

ethesis.nitrkl.ac.in/1090/1/Thesis.pdf

22

[5] Andrew B. Lewis, University of Cambridge, Computer Laboratory. JPEG tutorial.

https://www.cl.cam.ac.uk/teaching/1011/R08/jpeg/acs10-jpeg.pdf

[6] JPEG - Cardiff School of Computer Science & Informatics.

https://www.cs.cf.ac.uk/Dave/Multimedia/PDF/11 JPEG.pdf

23

